The central value of the Rankin-Selberg L-functions

نویسنده

  • Xiaoqing Li
چکیده

The values of L-functions at special points have been the subject of intensive studies. For example, a good positive lower bound for the central value of Hecke L-functions would rule out the existence of the Landau-Siegel zero, see the notable paper [IS]; the nonvanishing of certain Rankin-Selberg L-functions is a crucial ingredient in the current development of the generalized Ramanujan conjecture [LRS], etc. In this paper, we consider the simultaneous nonvanishing problem of products of Rankin-Selberg on GL(3) and GL(2) and Maass Lfunctions on GL(2) at the central point 1/2. Specifically, let uj(z) be an orthonormal basis of even Hecke-Maass forms for the modualr group SL(2,Z). For each uj(z), let aj(n) be its normalized Fourier coefficients (see the next section), we associate the L-function:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

Rankin-selberg L-functions in the Level Aspect

In this paper we calculate the asymptotics of various moments of the central values of Rankin-Selberg convolution L-functions of large level, thus generalizing the results and methods of W. Duke, J. Friedlander, and H. Iwaniec and of the authors. Consequences include convexity-breaking bounds, nonvanishing of a positive proportion of central values, and linear independence results for certain H...

متن کامل

A p-ADIC WALDSPURGER FORMULA

In this article, we study p-adic torus periods for certain p-adic valued functions on Shimura curves coming from classical origin. We prove a p-adic Waldspurger formula for these periods, as a generalization of the recent work of Bertolini, Darmon, and Prasanna. In pursuing such a formula, we construct a new anti-cyclotomic p-adic L-function of Rankin– Selberg type. At a character of positive w...

متن کامل

Subconvexity for Rankin-selberg L-functions of Maass Forms

This is a joint work with Yangbo Ye. We prove a subconvexity bound for Rankin-Selberg L-functions L(s, f⊗g) associated with a Maass cusp form f and a fixed cusp form g in the aspect of the Laplace eigenvalue 1/4 + k2 of f , on the critical line Res = 1/2. Using this subconvexity bound, we prove the equidistribution conjecture of Rudnick and Sarnak on quantum unique ergodicity for dihedral Maass...

متن کامل

Real zeros and size of Rankin-Selberg L-functions in the level aspect

In this paper, some asymptotic formulas are proved for the harmonic mollified second moment of a family of Rankin-Selberg Lfunctions. One of the main new input is a substantial improvement of the admissible length of the mollifier which is done by solving a shifted convolution problem by a spectral method on average. A first consequence is a new subconvexity bound for Rankin-Selberg L-functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008